Primality proof for n = 603103:
Take b = 2.
b^(n-1) mod n = 1.
100517 is prime. b^((n-1)/100517)-1 mod n = 63, which is a unit, inverse 449934.
(100517) divides n-1.
(100517)^2 > n.
n is prime by Pocklington's theorem.