Primality proof for n = 60477271182120907:
Take b = 2.
b^(n-1) mod n = 1.
1458566971 is prime.
b^((n-1)/1458566971)-1 mod n = 35912749431528278, which is a unit, inverse 11353171055635145.
(1458566971) divides n-1.
(1458566971)^2 > n.
n is prime by Pocklington's theorem.