Primality proof for n = 60650177408485084925772397359452343492676178496622593868981522480243230848859484494326083587960346220877691092522597549044871215899368832200959:
Take b = 2.
b^(n-1) mod n = 1.
28938774045863136338797101017419358636139979142479826529885118867 is prime.
b^((n-1)/28938774045863136338797101017419358636139979142479826529885118867)-1 mod n = 21928368804929145489995088054786816362128396422048973863128918045673241672863654150544546842904252399192436517674594043481299005813927386083871, which is a unit, inverse 44289949902097317455876783641926745262657511153915654456343861748250007883408787213665859019971790351031588683464297723314474063856049490164157.
183429412511632473752903671 is prime.
b^((n-1)/183429412511632473752903671)-1 mod n = 45184132331377598083811130943678439943671564837897288932114766548290225217510152091052207838864417306581619187430579363073901027507977299933928, which is a unit, inverse 35665641209149659241881700546241952514566210039067282432388231675243637694446924657374282666146463761988653538486072778355207147780702528618246.
(183429412511632473752903671 * 28938774045863136338797101017419358636139979142479826529885118867) divides n-1.
(183429412511632473752903671 * 28938774045863136338797101017419358636139979142479826529885118867)^2 > n.
n is prime by Pocklington's theorem.