Primality proof for n = 6193811023329968617:
Take b = 2.
b^(n-1) mod n = 1.
45467703727 is prime.
b^((n-1)/45467703727)-1 mod n = 2795102667851351273, which is a unit, inverse 3057181491676025995.
(45467703727) divides n-1.
(45467703727)^2 > n.
n is prime by Pocklington's theorem.