Primality proof for n = 621442270579440059553893689:
Take b = 2.
b^(n-1) mod n = 1.
3529893208993 is prime.
b^((n-1)/3529893208993)-1 mod n = 441952410632030701283036830, which is a unit, inverse 80847102613013220302727421.
31401709 is prime.
b^((n-1)/31401709)-1 mod n = 595379538603132195398204557, which is a unit, inverse 59347935071046483898128973.
(31401709 * 3529893208993) divides n-1.
(31401709 * 3529893208993)^2 > n.
n is prime by Pocklington's theorem.