Primality proof for n = 622491383:
Take b = 2.
b^(n-1) mod n = 1.
311245691 is prime. b^((n-1)/311245691)-1 mod n = 3, which is a unit, inverse 207497128.
(311245691) divides n-1.
(311245691)^2 > n.
n is prime by Pocklington's theorem.