Primality proof for n = 629314117180951:
Take b = 2.
b^(n-1) mod n = 1.
900886289 is prime.
b^((n-1)/900886289)-1 mod n = 84576020389395, which is a unit, inverse 203006583007471.
(900886289) divides n-1.
(900886289)^2 > n.
n is prime by Pocklington's theorem.