Primality proof for n = 638388514873056719:
Take b = 2.
b^(n-1) mod n = 1.
22911527 is prime.
b^((n-1)/22911527)-1 mod n = 444609445155695497, which is a unit, inverse 219574945547202668.
8199883 is prime.
b^((n-1)/8199883)-1 mod n = 117935160697089829, which is a unit, inverse 517345963694467462.
(8199883 * 22911527) divides n-1.
(8199883 * 22911527)^2 > n.
n is prime by Pocklington's theorem.