Primality proof for n = 6418733:
Take b = 2.
b^(n-1) mod n = 1.
84457 is prime. b^((n-1)/84457)-1 mod n = 2105383, which is a unit, inverse 1942126.
(84457) divides n-1.
(84457)^2 > n.
n is prime by Pocklington's theorem.