Primality proof for n = 6422114145216731079184721:
Take b = 2.
b^(n-1) mod n = 1.
8025333451 is prime.
b^((n-1)/8025333451)-1 mod n = 3941558563874689577465307, which is a unit, inverse 3471054566371758958464736.
3391 is prime.
b^((n-1)/3391)-1 mod n = 750792577068791437894232, which is a unit, inverse 3160310760022609311007719.
(3391 * 8025333451) divides n-1.
(3391 * 8025333451)^2 > n.
n is prime by Pocklington's theorem.