Primality proof for n = 6514380687527359:
Take b = 2.
b^(n-1) mod n = 1.
122232809 is prime.
b^((n-1)/122232809)-1 mod n = 4672174719684471, which is a unit, inverse 2207933795383807.
(122232809) divides n-1.
(122232809)^2 > n.
n is prime by Pocklington's theorem.