Primality proof for n = 66417393611:
Take b = 2.
b^(n-1) mod n = 1.
3677 is prime.
b^((n-1)/3677)-1 mod n = 66219752669, which is a unit, inverse 49445954925.
197 is prime.
b^((n-1)/197)-1 mod n = 34676449720, which is a unit, inverse 51215684949.
(197 * 3677) divides n-1.
(197 * 3677)^2 > n.
n is prime by Pocklington's theorem.