Primality proof for n = 669274658641:
Take b = 2.
b^(n-1) mod n = 1.
71741 is prime.
b^((n-1)/71741)-1 mod n = 508527992117, which is a unit, inverse 610938685323.
617 is prime.
b^((n-1)/617)-1 mod n = 85948266743, which is a unit, inverse 407961336565.
(617 * 71741) divides n-1.
(617 * 71741)^2 > n.
n is prime by Pocklington's theorem.