Primality proof for n = 67188132490279:
Take b = 2.
b^(n-1) mod n = 1.
11198022081713 is prime.
b^((n-1)/11198022081713)-1 mod n = 63, which is a unit, inverse 2132956586993.
(11198022081713) divides n-1.
(11198022081713)^2 > n.
n is prime by Pocklington's theorem.