Primality proof for n = 67280421310721:
Take b = 3.
b^(n-1) mod n = 1.
2998279 is prime.
b^((n-1)/2998279)-1 mod n = 61150258807255, which is a unit, inverse 47000331560307.
373 is prime.
b^((n-1)/373)-1 mod n = 65541179653180, which is a unit, inverse 20076373578344.
(373 * 2998279) divides n-1.
(373 * 2998279)^2 > n.
n is prime by Pocklington's theorem.