Primality proof for n = 681148913:
Take b = 2.
b^(n-1) mod n = 1.
1123 is prime.
b^((n-1)/1123)-1 mod n = 62040257, which is a unit, inverse 116464728.
227 is prime.
b^((n-1)/227)-1 mod n = 405588263, which is a unit, inverse 409503919.
(227 * 1123) divides n-1.
(227 * 1123)^2 > n.
n is prime by Pocklington's theorem.