Primality proof for n = 68232721:
Take b = 2.
b^(n-1) mod n = 1.
263 is prime.
b^((n-1)/263)-1 mod n = 9801434, which is a unit, inverse 1386655.
47 is prime.
b^((n-1)/47)-1 mod n = 54581964, which is a unit, inverse 50497526.
(47 * 263) divides n-1.
(47 * 263)^2 > n.
n is prime by Pocklington's theorem.