Primality proof for n = 68681292269:
Take b = 2.
b^(n-1) mod n = 1.
24217663 is prime. b^((n-1)/24217663)-1 mod n = 67551786400, which is a unit, inverse 3312474643.
(24217663) divides n-1.
(24217663)^2 > n.
n is prime by Pocklington's theorem.