Primality proof for n = 68766914224904862224418909762329269:
Take b = 2.
b^(n-1) mod n = 1.
3981375605939564164049 is prime.
b^((n-1)/3981375605939564164049)-1 mod n = 17700154212180262059708248390470869, which is a unit, inverse 55601180552918659551374122168041741.
(3981375605939564164049) divides n-1.
(3981375605939564164049)^2 > n.
n is prime by Pocklington's theorem.