Primality proof for n = 7005507114193524029414407471112866694107408372181827430432047949693881095742546770048184168812214569007093:
Take b = 2.
b^(n-1) mod n = 1.
181015782627525661863876044430183339290714113279526328477904366773136146558252253 is prime.
b^((n-1)/181015782627525661863876044430183339290714113279526328477904366773136146558252253)-1 mod n = 2494535767614101733108919712137459934061037193498288288685274195532168881112853609977655222815110319031983, which is a unit, inverse 518060414905332703987130930634580507364043799395542411097983335412131324356245790425018253523347953292520.
(181015782627525661863876044430183339290714113279526328477904366773136146558252253) divides n-1.
(181015782627525661863876044430183339290714113279526328477904366773136146558252253)^2 > n.
n is prime by Pocklington's theorem.