Primality proof for n = 7180178067871:

Take b = 2.

b^(n-1) mod n = 1.

1798367 is prime.
b^((n-1)/1798367)-1 mod n = 7170372988273, which is a unit, inverse 3163238940460.

133087 is prime.
b^((n-1)/133087)-1 mod n = 2423926101171, which is a unit, inverse 5132894331958.

(133087 * 1798367) divides n-1.

(133087 * 1798367)^2 > n.

n is prime by Pocklington's theorem.