Primality proof for n = 718995365596683143:

Take b = 2.

b^(n-1) mod n = 1.

67219 is prime.
b^((n-1)/67219)-1 mod n = 503166146064174467, which is a unit, inverse 20819666371703180.

587 is prime.
b^((n-1)/587)-1 mod n = 298930498485723904, which is a unit, inverse 546837130236853138.

577 is prime.
b^((n-1)/577)-1 mod n = 590857031294571889, which is a unit, inverse 48464306780162613.

(577 * 587 * 67219) divides n-1.

(577 * 587 * 67219)^2 > n.

n is prime by Pocklington's theorem.