Primality proof for n = 718995365596683143:
Take b = 2.
b^(n-1) mod n = 1.
67219 is prime.
b^((n-1)/67219)-1 mod n = 503166146064174467, which is a unit, inverse 20819666371703180.
587 is prime.
b^((n-1)/587)-1 mod n = 298930498485723904, which is a unit, inverse 546837130236853138.
577 is prime.
b^((n-1)/577)-1 mod n = 590857031294571889, which is a unit, inverse 48464306780162613.
(577 * 587 * 67219) divides n-1.
(577 * 587 * 67219)^2 > n.
n is prime by Pocklington's theorem.