Primality proof for n = 719569513687:
Take b = 2.
b^(n-1) mod n = 1.
3686357 is prime. b^((n-1)/3686357)-1 mod n = 150719717655, which is a unit, inverse 45408564781.
(3686357) divides n-1.
(3686357)^2 > n.
n is prime by Pocklington's theorem.