Primality proof for n = 72092088130766173:
Take b = 2.
b^(n-1) mod n = 1.
858239144413883 is prime.
b^((n-1)/858239144413883)-1 mod n = 70259177123929047, which is a unit, inverse 12217979862934461.
(858239144413883) divides n-1.
(858239144413883)^2 > n.
n is prime by Pocklington's theorem.