Primality proof for n = 726928914639303991:
Take b = 2.
b^(n-1) mod n = 1.
8076987940436711 is prime.
b^((n-1)/8076987940436711)-1 mod n = 241399487730093812, which is a unit, inverse 625336708063870189.
(8076987940436711) divides n-1.
(8076987940436711)^2 > n.
n is prime by Pocklington's theorem.