Primality proof for n = 7287687546097909:
Take b = 2.
b^(n-1) mod n = 1.
39264711677 is prime.
b^((n-1)/39264711677)-1 mod n = 5627196392667629, which is a unit, inverse 6425899842354159.
(39264711677) divides n-1.
(39264711677)^2 > n.
n is prime by Pocklington's theorem.