Primality proof for n = 72983678353:
Take b = 2.
b^(n-1) mod n = 1.
116961023 is prime.
b^((n-1)/116961023)-1 mod n = 43308433220, which is a unit, inverse 41467173268.
(116961023) divides n-1.
(116961023)^2 > n.
n is prime by Pocklington's theorem.