Primality proof for n = 73965767:
Take b = 2.
b^(n-1) mod n = 1.
5283269 is prime. b^((n-1)/5283269)-1 mod n = 16383, which is a unit, inverse 27838181.
(5283269) divides n-1.
(5283269)^2 > n.
n is prime by Pocklington's theorem.