Primality proof for n = 750357943:
Take b = 2.
b^(n-1) mod n = 1.
125059657 is prime. b^((n-1)/125059657)-1 mod n = 63, which is a unit, inverse 595522177.
(125059657) divides n-1.
(125059657)^2 > n.
n is prime by Pocklington's theorem.