Primality proof for n = 757986407:
Take b = 2.
b^(n-1) mod n = 1.
245621 is prime. b^((n-1)/245621)-1 mod n = 29843288, which is a unit, inverse 449445586.
(245621) divides n-1.
(245621)^2 > n.
n is prime by Pocklington's theorem.