Primality proof for n = 760192948315673:
Take b = 2.
b^(n-1) mod n = 1.
95024118539459 is prime.
b^((n-1)/95024118539459)-1 mod n = 255, which is a unit, inverse 530644489412509.
(95024118539459) divides n-1.
(95024118539459)^2 > n.
n is prime by Pocklington's theorem.