Primality proof for n = 76152123566553479:
Take b = 2.
b^(n-1) mod n = 1.
4156739 is prime.
b^((n-1)/4156739)-1 mod n = 72328433532179141, which is a unit, inverse 59481731497343060.
1354841 is prime.
b^((n-1)/1354841)-1 mod n = 25366394481550358, which is a unit, inverse 14333593687874871.
(1354841 * 4156739) divides n-1.
(1354841 * 4156739)^2 > n.
n is prime by Pocklington's theorem.