Primality proof for n = 76884956397045344220809746629001649092737531784414529538755519063063536359079:
Take b = 2.
b^(n-1) mod n = 1.
4271386466502519123378319257166758282929862876911918307708639947947974242171 is prime.
b^((n-1)/4271386466502519123378319257166758282929862876911918307708639947947974242171)-1 mod n = 262143, which is a unit, inverse 38464621891880789334548455770910073027184586584156785820789302245581967105298.
(4271386466502519123378319257166758282929862876911918307708639947947974242171) divides n-1.
(4271386466502519123378319257166758282929862876911918307708639947947974242171)^2 > n.
n is prime by Pocklington's theorem.