Primality proof for n = 7709728928696487373337941203521096567469726390276358190857709:
Take b = 2.
b^(n-1) mod n = 1.
19920925890426226515689032734344471 is prime.
b^((n-1)/19920925890426226515689032734344471)-1 mod n = 7421485728027976821199880829036707845338863986538310611377925, which is a unit, inverse 686487807347447265258060002039026001717522219327303781451122.
(19920925890426226515689032734344471) divides n-1.
(19920925890426226515689032734344471)^2 > n.
n is prime by Pocklington's theorem.