Primality proof for n = 7721623655416232036046857:
Take b = 2.
b^(n-1) mod n = 1.
990435552551 is prime.
b^((n-1)/990435552551)-1 mod n = 222325180089916698880434, which is a unit, inverse 1092566823861671736584572.
23956433 is prime.
b^((n-1)/23956433)-1 mod n = 7223839218265130638879142, which is a unit, inverse 4182833321020526579302123.
(23956433 * 990435552551) divides n-1.
(23956433 * 990435552551)^2 > n.
n is prime by Pocklington's theorem.