Primality proof for n = 7724799505040016989101:
Take b = 2.
b^(n-1) mod n = 1.
3678475954780960471 is prime.
b^((n-1)/3678475954780960471)-1 mod n = 6609357667284130642291, which is a unit, inverse 5358122861409345222661.
(3678475954780960471) divides n-1.
(3678475954780960471)^2 > n.
n is prime by Pocklington's theorem.