Primality proof for n = 77912789:
Take b = 2.
b^(n-1) mod n = 1.
9227 is prime. b^((n-1)/9227)-1 mod n = 41124880, which is a unit, inverse 59525679.
(9227) divides n-1.
(9227)^2 > n.
n is prime by Pocklington's theorem.