Primality proof for n = 783553:
Take b = 2.
b^(n-1) mod n = 1.
53 is prime.
b^((n-1)/53)-1 mod n = 537587, which is a unit, inverse 282134.
11 is prime.
b^((n-1)/11)-1 mod n = 199177, which is a unit, inverse 229735.
7 is prime.
b^((n-1)/7)-1 mod n = 116903, which is a unit, inverse 687840.
(7 * 11 * 53) divides n-1.
(7 * 11 * 53)^2 > n.
n is prime by Pocklington's theorem.