Primality proof for n = 8025333451:
Take b = 2.
b^(n-1) mod n = 1.
473471 is prime. b^((n-1)/473471)-1 mod n = 7547537124, which is a unit, inverse 1664776396.
(473471) divides n-1.
(473471)^2 > n.
n is prime by Pocklington's theorem.