Primality proof for n = 806257589883349:
Take b = 2.
b^(n-1) mod n = 1.
67188132490279 is prime.
b^((n-1)/67188132490279)-1 mod n = 4095, which is a unit, inverse 392004605972588.
(67188132490279) divides n-1.
(67188132490279)^2 > n.
n is prime by Pocklington's theorem.