Primality proof for n = 807145746439:
Take b = 2.
b^(n-1) mod n = 1.
2862218959 is prime.
b^((n-1)/2862218959)-1 mod n = 633583051384, which is a unit, inverse 665047787438.
(2862218959) divides n-1.
(2862218959)^2 > n.
n is prime by Pocklington's theorem.