Primality proof for n = 818488084109:
Take b = 2.
b^(n-1) mod n = 1.
1269391 is prime. b^((n-1)/1269391)-1 mod n = 521784089295, which is a unit, inverse 242313004962.
(1269391) divides n-1.
(1269391)^2 > n.
n is prime by Pocklington's theorem.