Primality proof for n = 823789:
Take b = 2.
b^(n-1) mod n = 1.
467 is prime.
b^((n-1)/467)-1 mod n = 815733, which is a unit, inverse 310557.
7 is prime.
b^((n-1)/7)-1 mod n = 214694, which is a unit, inverse 608865.
(7^2 * 467) divides n-1.
(7^2 * 467)^2 > n.
n is prime by Pocklington's theorem.