Primality proof for n = 83295083:
Take b = 2.
b^(n-1) mod n = 1.
3203657 is prime. b^((n-1)/3203657)-1 mod n = 67108863, which is a unit, inverse 69028830.
(3203657) divides n-1.
(3203657)^2 > n.
n is prime by Pocklington's theorem.