Primality proof for n = 83326725728999296701078628838522133333655224556987:
Take b = 2.
b^(n-1) mod n = 1.
243585722668023007729 is prime.
b^((n-1)/243585722668023007729)-1 mod n = 45558077268598629559825647874255428992852997082338, which is a unit, inverse 74784180402974733943307062467610150124597390521344.
13481018963 is prime.
b^((n-1)/13481018963)-1 mod n = 38505998894110058337292829701939669729634037950975, which is a unit, inverse 676928970342584632397915495710524955933481069264.
(13481018963 * 243585722668023007729) divides n-1.
(13481018963 * 243585722668023007729)^2 > n.
n is prime by Pocklington's theorem.