Primality proof for n = 833843:
Take b = 2.
b^(n-1) mod n = 1.
18127 is prime. b^((n-1)/18127)-1 mod n = 459666, which is a unit, inverse 765264.
(18127) divides n-1.
(18127)^2 > n.
n is prime by Pocklington's theorem.