Primality proof for n = 8343868346871877:
Take b = 2.
b^(n-1) mod n = 1.
2955889 is prime.
b^((n-1)/2955889)-1 mod n = 1662267929321375, which is a unit, inverse 2102739785883355.
861659 is prime.
b^((n-1)/861659)-1 mod n = 4787336520938946, which is a unit, inverse 5782047266856740.
(861659 * 2955889) divides n-1.
(861659 * 2955889)^2 > n.
n is prime by Pocklington's theorem.