Primality proof for n = 835945042244614951780389953367877943453916927241:
Take b = 2.
b^(n-1) mod n = 1.
774023187263532362759620327192479577272145303 is prime.
b^((n-1)/774023187263532362759620327192479577272145303)-1 mod n = 759074791811550622595041579907670563367995104129, which is a unit, inverse 829816007257442285709994915664332448456883264405.
(774023187263532362759620327192479577272145303) divides n-1.
(774023187263532362759620327192479577272145303)^2 > n.
n is prime by Pocklington's theorem.