Primality proof for n = 842498333348457493583344221469362581248531362447993170180305534793:
Take b = 2.
b^(n-1) mod n = 1.
893113324603023226118586479389229 is prime.
b^((n-1)/893113324603023226118586479389229)-1 mod n = 150287981293813003532405352332191737634286737402038733939609469394, which is a unit, inverse 281090931154955221237937915069995517197246359725370168521511157258.
3803739800316731423245653299251 is prime.
b^((n-1)/3803739800316731423245653299251)-1 mod n = 670847006592827343245479918016098168981972048394341514516737840334, which is a unit, inverse 730864327868745846481740072331964778545225465221532220315033300211.
(3803739800316731423245653299251 * 893113324603023226118586479389229) divides n-1.
(3803739800316731423245653299251 * 893113324603023226118586479389229)^2 > n.
n is prime by Pocklington's theorem.