Primality proof for n = 8464734851:
Take b = 2.
b^(n-1) mod n = 1.
51473 is prime.
b^((n-1)/51473)-1 mod n = 624094917, which is a unit, inverse 7839638184.
23 is prime.
b^((n-1)/23)-1 mod n = 2272219400, which is a unit, inverse 2609314566.
(23 * 51473) divides n-1.
(23 * 51473)^2 > n.
n is prime by Pocklington's theorem.